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Abstract-A mist flow in a laminar boundary layer over a hot Rat plate is studied by asymptotic and 
numerical methods. A two-continuum approximation is used to describe the ‘gas-evaporating drops’ two- 
phase medium. The S&man force, acting on the drops and causing their deposition, is taken into account. 
The mechanism of heat transfer enhancement by the drops evaporating in the boundary layer has been 
studied, and similarity criteria have been found. The predicted overall heat transfer coefficient for a plate 

segment is in good agreement with Ihe familiar experimental data. 

1. INTRODUCTION 

THE CURRENT interest in the study of the laws govern- 
ing the thermal interaction of two-phase flows with 
solid surfaces is dictated by a wide range of problems 
encountered in technical applications. Primarily, these 
are the problems of predicting the optimal thermal 
regimes of thermal power engineering equipment with 
a two-phase working body (heat exchangers, steam 
generators, combustion chambers, etc.). It has been 
determined experimentally that the presence of even 
a small amount of a dispersed admixture can lead to 
substantial changes in heat fluxes to solid surfaces 
immersed in two-phase flows [I, 21. Owing to the great 
diversity in the two-phase wall flows, the construction 
of a consistent theory with allowance for the inertial 
properties of particles (drops) has been only partly 
developed. Closed mathematical models have been 
proposed only for several typical, but the most simple, 
flows: a laminar boundary layer in dusty gas on a 
plate, in the inlet lengths of a channel and a tube, in 
the stagnation point vicinity and a number of others 
[3-81. The wall flows of ‘gas drops’ mixtures require 
even more complicated models which would take into 
consideration the possible formation of a liquid film 
on a surface immersed in flow [9] and also phase 
transitions on the surfaces of drops (evaporation). 
The present work deals with the construction of the 
theory for a laminar boundary layer of a ‘gas-drops’ 
mixture on a hot flat surface in axial flow under the 
conditions when two-velocity and two-temperature 
effects, and also drop evaporation, are significant. 
Previously, evaporation of single drops in a boundary 
layer has been investigated in ref. [IO]. Within the 
framework of a one-velocity model, the boundary 
layer in a vapour-drop medium has been analysed in 
ref. [I l] where, in particular, the possibility of the 
formation of a pure vapour wall layer has been shown. 

Below, a two-continuum approximation is adopted, 
and a consistent asymptotic model of a ‘gas-drops’ 
mixture boundary layer is constructed. By taking as 
an example the axial flow past a hot Rat plate, a 
number of limiting situations are studied (low con- 
centration of drops, absence of drop deposition, drop 
deposition is substantial), and numerical and asymp- 
totic solutions of the constructed boundary layer 
equations have been found. The main result is the 
identification of the similarity numbers and expla- 
nation of the mechanism underlying a sharp increase 
in heat transfer of a surface immersed in flow in the 
presence of a small amount of evaporating drops in 
the boundary layer. For the regime of inertial depo- 
sition of drops, an agreement was found between the 
predicted overall heat transfer coefficient of the plate 
and experimental data [2]. In this paper, the model of 
a two-phase boundary layer on surfaces in axial flows 
[3-5, 71 has been extended to the case of the presence 
of phase transitions on particle surfaces. 

2. BASIC EQUATIONS AND STATEMENT OF 

THE PROBLEM 

Consider the usual assumptions of the model of a 
dust-laden gas with a negligibly small volume con- 
centration of the particles on the surfaces of which a 
phase transition is taking place [ 12, 131. The drops are 
considered to be monodisperse, with time-dependent 
(due to evaporation) radius u and mass m. The drop 
substance vapour is the carrying phase. Besides the 
Klyachko form of the aerodynamic drag force [l4], 
the expression for the interphase momentum ex- 
change will involve the Saffman lift force [15], the 
importance of which grows rapidly with the size of 
the particle moving in the boundary layer [8]. Then, 
in the Cartesian coordinate system, the force acting 
on the drop, will acquire the form 
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NOMENCLATURE 

;: 
dimensionless rate of drop evaporation T temperature 
dimensionless coefficient in equation u, 1’ velocity components 
(9) V velocity 

(‘I. c-2, c3 auxiliary functions in equation s, I’ coordinates 
(19) X,-Y stretched coordinates. 

cp, c, specific heats of vapour and drops 
EC Eckert number Greek symbols 
c, y, I’, II’ auxiliary functions in equations cr mass concentration of drops 

(18) and (19) small parameter 

.: 
force acting on a drop i self-similar variable of boundary layer 
unit vector along the .u-axis ‘1 boundary layer variable 

F Blasius function K dimensionless parameter characterizing 
G, D correction factors allowing for inertia the Saffman force magnitude 

effects in drag force theory and heat /‘, 1’ dynamic and kinematic viscosities 
transfer laws P density 

H heat of vaporization fJ drop radius 
J drop evaporation rate x, cp dimensionless parameters characterizing 
k dimensionless coefficient the gain in heat transfer. 
1 length of drop retardation 
L length of plate segment Subscripts 
m mass of a drop S dispersed phase parameters 
4 number density of drops cc external flow parameters 
PI Prandtl number 0 initial value 
4 heat flux 1, 2, 3 subscripts of new variables. 
R maximum Reynolds number of flow 

around drops Superscript 
RC Reynolds number * dimensional quantities. 

f ,  = 67ca*p*(v* -v,*)( I + ;Re,“‘) equilibrium evaporation. The mass flux from the drop 
surface J* per unit time will be defined in this case 

(u*-tf:)j. (1) from the condition 

J*H = y,?. 
Here and hereafter, the asterisk denotes the dimen- 
sional quantities, the subscript s refers to the par- 
ameters of the medium of particles, j signifies the unit 
vector along the)‘*-axis, Re, = 2a*p*lv* -v:l/p*. The 
expression for the heat flux to a drop will be adopted 
in the form [13] 

q: = 4no*A*(T*- T:)(l +0.3Re,l” Pr”‘). (2) 

Here i,* is the thermal conductivity of the carrying 
phase, Pr = c,p*/i,*, cP is the specific heat of the 
carrying phase at constant pressure. Note that in 
expressions (1) and (2) the effects associated with the 
evaporation of particles are not taken into account. 
These effects require negligibly small corrections in 
equations (I) and (2) [ 121 in the considered case of a 
weak injection on the particle surface. The transfer 
coefficients are assumed to be constant. The evap- 
oration process is considered to be equilibrium. The 
drop surface temperature is related to the ambient 
vapour pressure by the Clapeyron-Clausius condi- 
tion. Then, while moving in a boundary layer at a 
constant pressure, the drop will have a constant 
temperature which will be equal to the temperature of 

Here H is the latent heat of vaporization. Now, the 
equations for a vapour-drop mixture will be written 
under the adopted assumptions for flow in the bound- 
ary layer of a hot semi-infinite plate having the pre- 
scribed temperature T,*. The origin of the Cartesian 
coordinate system s*, y* will be fixed on the plate tip. 
To non-dimensionalize, the relaxation length of phase 
velocities with the Stokes resistance law [4] will be 
taken as the longitudinal length scale. The dimen- 
sionless variables will be introduced as follows : 

X* Y* t1* 
* 

4 
,y =*-, 

I 
“=$ u=u*,, us=2 

* 
US V* CT* 

v, = ~ 
L&J& 

UC-- 
ll: JE’ 

CT=, 
g’ar, 

12: T*-T: T,t-T$ 
n,=--, 

n,b, 
T=------- 

Tz-T,*’ 
T, = ~ 

Tz-T; 

m* u* [=“” P’* 
6x0*, /.I* ’ &=-I. 

Here n, is the number density of drops, I/E is the 
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Reynolds number based on the relaxation length of 
phase velocities, the subscript m refers to the external 
flow parameters. 

When E << I in the boundary layer approximation 
[4], the equations of the vapour-drop mixture [I21 
for the case of an incompressible carrying phase will 
acquire the following form. The continuity equations 
of phases are 

r7(,1,u,) L:(n,v,) au au -+-= 
?s drj 

0, - + 7 = auJn,. a.\- oq (3) 

The notations are introduced J = a( I - T)D 

Pk r=,, u = 
2c,(T;i:-TT:) 

P 3H PI 

D = (I f0.3PI J R”+-u,I’ ?). 

The momentum equations of phases will be 

& (&$ +2) = (v-~,)G+Ko(LI-u,) au 
&) 29 

au au 
us +l’G +C(f7,uf;+ctun,(u-uu,)J= $. (4) 

Here 

j; = (LI-u,)G, G = I +;R2’3(~-u,12’3 

R= 
2a: 11; p* 

IL* ’ 

whcrc pr is the drop substance density. The drop 
evaporation equation is 

(5) 

The heat influx equation is given as 

dT ?iT I a?T 
u,+r-=---EEL. 

U.Y 811 Pr aq- 

+a Ecn,~~.~.(~~-s,)+aaJn,(l-T)+~.n,J. 

(6) 

Here 

*2 
EC= Us. 

c,(T;-T?)’ Ju 

In the external flow, the velocity and phase equi- 
librium is implied. Then the boundary conditions will 
become 

r/=0: u=v=T=O, ~]+a: u=T=l 

x=0: u,=T,=cr=n,=l, v,=O. (7) 

The formulated system of equations for a vapour- 
drop boundary layer depends on five similarity par- 

Table I 

0: (cm) I (cm) R K 

lO-4 0.014 1.33 0.69 
10-j I .44 13.3 22.1 
10-l I44 133 717.5 

ameters, introduced above: the Prandtl number Pr, 
the Eckert number EC, the relative mass drop con- 
centration c(, the parameter which characterizes the 
drop evaporation rate u, and finally, the parameter 
characterizing the contribution of the Saffman force 
to the interphase momentum exchange K. 

It should be noted that the adopted approximation 
of the incompressible carrying phase is applicable only 
at small Mach numbers of the external flow and small 
temperature differences in the boundary layer. For 
simplicity, the transfer coefficients of the carrying 
phase are assumed to be constant. 

3. SIMPLIFICATION OF THE MODEL FOR 

CHARACTERISTIC LIMITING CASES 

The system of equations (3)-(7) will be simplified 

by neglecting the terms which are small for the usual 
conditions of mist flow origination and movement. 
The magnitude of the governing parameters will be 
evaluated for the case, when u$ = IO’ cm s-‘, 

PJP ‘* = 103. p* = 0.001 g cmm3, II* = 0.15 cm’s ‘, 
H=2300Jg-‘,Tz-T$=50”C,cP=2Jdegg-’ 
and for three sizes of drops (see Table I). In this 
case, the Eckert number and the scale of the drop 
evaporation rate are EC = lo-‘, a = 0.043. It is clear 
from Table I that the parameter K, i.e. the role of the 
Saffman force, grows quickly with the drop size. For 
large drops, the Saffman force is decisive for the pro- 
cess of their deposition and heat transfer with the 
surface immersed in flow. The smallness of parameters 
EC and u and also of CI (which usually does not exceed 
several per cent) allows one to discard in equations 
(3)-(7) the terms of the order of EC and of the product 
eta. Then, the boundary layer equations will acquire 
the form 

a(n,u,) a(n,r,) 

as + 7 = 
0 

a4 au, (u-u,)G 
“x +vsayI = c2 

(V-V,)G + K(U-Us) 
c2 

ff 
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The system of equations (8) makes it possible to 
analyse the significant effect of evaporating drops on 
the process of heat exchange with the surface exposed 
to flow. Since the Saffman force expels the drops onto 
the wall [8], the overall heat flux to the surface is equal 
to the sum of heat fluxes due to the heat conduction 
of the carrying phase y: and owing to the contact heat 
transfer and evaporation of depositing drops (12. The 
presence of drops can lead to an increase in q:. as 
compared with q$ (the heat flux to the wall) in the 
case of the absence of drops. 

Let us investigate the solution of equations (8) for 
two limiting cases : 

(a) the deposition of drops is insignificant and heat 
transfer is governed by the vapour thermal con- 
ductivity q: >> q: ; and 

(b) the evaporation of depositing drops is the 
basic mechanism of heat transfer enhancement q: >> 
q: - qt. 

4. THE ABSENCE OF THE DEPOSITION OF 

DROPS 

Consider the case of small drops, when the Saffman 
force may be neglected. It is assumed in equations (8) 
that G = D = I and K = 0. As experience in numerical 
calculations shows [4], the effect of the concentration 
of particles on the carrying phase velocity field can 
be neglected, if the particle concentration is low 
(a < 0.1). This is explained by the smallness of the 
source term ctn,(u--u,) in the carrying phase momen- 
tum equation even in the region of the accumulation 
of particles. In the case under consideration, 0 < I, 
therefore, the indicated estimate for the source term 
in the gas momentum equation will still be valid. 
Hence, in the approximation assumed, the effect of 
drops is described only by the source term in the heat 
influx equation for the carrying phase. In the region 
of the accumulation of drops this effect can be sub- 
stantial. 

As follows from ref. [4], at u = I, a non-integrable 
singularity of particle concentration [I61 appears on 
the plate surface and this leads to the necessity of 
adding to the complexity of the particles medium 
model. It will be shown that in the case of evaporating 
drops the concentration singularity is integrable and 
originates only at one point of the retardation of 
drops. Behind this point, a region of pure steam is 
being developed in the boundary layer. At the edge of 
this region r~ = 0. 

In order to study the asymptotic structure of flow 
near the plate surface and near the stagnation point 
of drops, introduce a formal small parameter q,,. This 
is the value of the ordinate prior to which the longi- 
tudinal velocity profile of the carrying phase at the 
stagnation point of drops can be considered as linear 
with a prescribed accuracy, i.e. u = kq, where k is a 
constant. Then with rl < I]~ there will be the following 
value orders : u - ‘lo, u - vi. The value orders of the 

dispersed phase parameters on the length scale x - I, 
q - 6 (qO) (where 6 + 0 when q0 + 0) are as follows 

4 - I, (T-I, l&-6’. 

In this region the equations for main terms of the 
expansion of solution (8) are of the form 

The solution of these equations is as follows 

u, = (I -bs)“h, cr = (I -b.u)“‘jh 

2a+3 
1,,=;, b=7. (9) 

I 

Now, the asymptotic solution near the stagnation 
point of drops will be found. Introduce a new coor- 
dinate system and stretched variables 

I 
s, = .Y- -, 

b 

In this region, the dispersed phase parameters will be 
sought in the form : 

l/‘;;3a”(X, Y) + ‘, ~ou,o(x, Y) + ‘. . 

;n,,(x v+ ... 

Then, the equations for the main expansion terms will 
acquire the form 

The conditions of the matching with solution (9) on 
the scale x - I for X+ co yield 

u. - (- bX)“‘3h, us0 - (- bX) lib, neOusO - I. 

Solution (IO) can be presented in the form 

ah, kYa; ax 
7+2= -T+B(X,Y) 

us0 = kY+a;‘“, 11,~ = i. 
40 

(11) 

The condition of the matching with the solution in the 
region x - I gives 

. B(X, Y) = !+)‘““. (12) 

Now, the equation will be found for the surface on 
which drops evaporate completely. Equations (I I) 
and (12) yield that c = 0 on the surface the equation 
of which in the initial coordinate has the form 

It is seen that the concentration of drops tends to s 
infinity only at one point on the plate surface at 
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FIG. 1. The dependence of the thickness of a pure vapour 
layer on (I and a. 

s = l/b. The concentration singularity is integrable, 
consequently, the used model of non-interacting par- 
ticles remains applicable [l6]. 

To quantitatively determine the effect exerted by 
drops on heat flux to the wall due to their accumu- 
lation near the surface (13), numerical calculations of 
equations (8) were conducted at ti = 0, G = D = 1 
and neglecting the effect of drops on the carrying 
phase field velocity. For numerical calculations, sys- 
tem (8) was rewritten in new variables X, [ = q/ Jx, 
and new unknown functions v, = Jxv, v,, = Jxvs, 
9 = ns.4 were introduced. The finite-difference 
method [4] was employed. To the right of the stag- 
nation point of drops, the lower boundary conditions 
for the difference equations referring to the dispersed 
phase were fulfilled on the surface, equation (13). 

The results of calculations of the boundary of the 
pure vapour region are presented in Fig. I. Curves I 
and 2 correspond to the values c1 = 0.05 ; a = 0.01 and 
0.003 ; curve 3 corresponds to a = 0.005 and CI = 0.03. 
It is evident that within the boundary layer the relative 
thickness of the pure vapour region grows quickly. 
In Fig. 2 the carrying phase temperature profile is 

6 

FIG. 2. The profile of the carrying phase temperature, formed 
far from the plate tip. 
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Q 

FIG. 3. Development of profiles of concentration and radii 
of drops along the longitudinal coordinate. Curves I cor- 
respond to s = 0.5 for /I,([) and s = 0.993 for cr([), curves 2 

correspond to s = I I. curves 3 to s = 25. 

presented which is calculated for GI = 0.005 and 
a = 0.01 and which is formed far from the leading 
edge. When x >> 1 I, this profile becomes virtually self- 
similar. The dashed line presents the temperature pro- 
file in a pure gas with which T(c) coincides at small 
values of x. Figure 3 demonstrates the development 
of the dispersed phase parameters a([) (solid lines) 
and n,(c) (dashed lines) along the longitudinal coor- 
dinate at o! = 0.05 and a = 0.01. Curve I corresponds 
to .Y = 0.5 for n, and x = 0.993 (the stagnation point) 
for G ; curves 2 and 3 correspond to the values x = 11 
and 25, respectively. Note that n, reaches the finite 
value at the boundary of the pure vapour region every- 
where except the drop stagnation point. Calculation 
results for the relative increase in the heat flux Nu/Nu, 
on the plate are presented in Fig. 4 (Nu, is the Nusselt 
number in the case of pure vapour). Curves 1-3 were 
calculated for the values a = 0.003 ; c( = 0.11,0.05 and 
0.03, respectively ; and curve 4 for the values a = 0.01 
and c( = 0.03. It is seen that the ratio Nu/Nu, virtually 
ceases to depend on x with the increase in the distance 
from the leading edge. The results of systematic cal- 
culations show that this limiting value for different 
small values of a and a depends only on the ratio 

ci 3ciHP1 
x=cr=2c,(T::-T~). (14) 

Curve 5 in Fig. 4 represents the dependence (at 
large values of x) of the quantity Nu/Nu,, on x. Thus, 
in the case considered the parameter x is the only 
similarity parameter which describes the degree of 
heat transfer enhancement for linear scales greatly 
exceeding the relaxation length of the velocities of 
phases. In this case, the heat transfer enhancement 
effect is explained by the accumulation and simul- 
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FIG. 4. Local heat lransfer coeflicient vs LI and z (curves I- 
4) and its limiting value (s D I) vs x (curve 5) (I, (I = 0.003. 
a = 0.1 : 2, 0 = 0.003. u = 0.05; 3, 0 = 0.003, SL = 0.03: 4. 

N = 0.01. cl = 0.03). 

tancous evaporation of drops in a thin wall region. 
From equation (14) and Fig. 4 it is seen that the heat 
transfer enhancement can attain finite values even 
at a small concentration of drops. This effect is the 
stronger the smaller the temperature differences and 
the greater the vaporization heat of the drops. 

5. INTENSIVE DEPOSITION OF DROPS 

Consider the second limiting case, i.e. large drops 
when the Saffman force dominates in the interphase 
momentum exchange and the deposition of drops 
becomes appreciable. As follows from the results of 
calculations for the boundary layer with depositing 
particles [8], the involvement of the Saffman force 
leads to the disappearance of the effect of the accumu- 
lation of particles in a boundary layer. The time for 
which the depositing drops attain the wall is not large, 
therefore when the values of t( and a are small, it is 
possible to neglect both the effect of the drops on the 
carrying phase movement and the variation in the 
radius of the drops until the time of their deposition. 
In this case, the surface immersed in flow is governed 
in the main by the evaporation of the drops falling 
out on the hot surface. Here the processes of the 
breaking of drops and the downstream sweeping of 
tiny evaporating drops in a thin wall layer are possible. 
At the present time, the theoretical description of these 
processes is difficult [ 131, therefore it will be assumed 
that a drop depositing on the surface absorbs the 
energy of evaporation. Then the total heat flux from 
the wall may be presented in the form 

The last term in square brackets may be omitted 
for the small temperature differences considered. In a 
non-dimensional form, the ratio of the heat flux (I* to 
its value in the cast of the absence of drops ql: has the 
form 

‘/* NLI ciH Pr” 
-=-=I+ 
41: NIL,, 0.332c,( T:- T*, ) 

n,, II.,,v IJS. ( I 5) 

For deriving equation (I 5). use was made of the 
expression for the heat flux from the plate in a pure 
gas [I71 

42 = 0.3322*( T; - Tl )Prl" J& 
( > 

I!? 

As is seen from equation (I 5), in the approximation 
considered the study of the plate heat transfer 
enhancement was reduced to the determination of the 
mass flux of the drops depositing on the wall. This 
statement of the problem remains valid also for the 
case when the carrying phase is a mixture of the vap- 
our of the substance of drops with an inert gas. 

The constructed models of the gas-drop mixture 
flow in a boundary layer and relation (I 5) were used 
for comparison with experimental data [2] and expla- 
nation of the discovered effect of sharp heat transfer 
enhancement on a plate at a low concentration of 
drops. The authors of ref. [2] carried out an exper- 
imental investigation into the influence of the evap- 
oration of water drops in an air boundary layer with 
longitudinal flow past a vertical plate with tem- 
peratures of 50 and 70°C. The external flow tem- 
perature was 20°C ; the mean diameter of drops (cal- 
culated on the basis of the mean volume of drops) 
was equal to 6 x IO-’ cm. In experiments the con- 
centration of drops did not exceed 1.67%. 

The predicted integral heat transfer coefficient for 
a segment of the plate (2 cm < x < 16 cm) will be 
compared with the experimental data of ref. [2]. Com- 
pute the quantity 

A = ; & ds*, 
s 

2cm < x* < 16cm, L = l4cm. 
0 

Equation (I 5) yields 

uH PI.“’ 

’ = 0.332c,( T: - T:) ’ 

To calculate nrw and v,,,, the equations for a dis- 
persed phase from system (8) were solved numerically 
at c( = 0 and B = 1. Neglecting the effect of drops, the 
carrying phase velocity field in the boundary layer is 
determined by solving the Blasius problem. It has the 
form [17] 
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u(s, q) = F’, 1:(s.ly) = &. 5-F (’ > 
Hem the function F[rl/,/s] satisfies the boundary 
value problem 

W”+FF” = 0, F(0) = F’(0) = 0, F’(m) = I. 

The motion and continuity equations for the 
medium of the drops, considered on their fixed tra- 
jectory, may be reduced to a system of ordinary 
differential equations. For this purpose, the dimen- 
sionless time of the motion of drops along the tra- 
jectory t = t*rr*, /I and the Lagrangian coordinate rlo 
(the ordinate of the trajectory origin at s = 0) will be 
introduced as independent variables. With ‘lo fixed, 
the particle medium motion equations and the bound- 
ary conditions will acquire the form 

t = 0: s = 0, ‘1= lfo, u, = I, 0, = 0. (17) 

The continuity equation in the selected Lagrangian 
coordinates has the form 

I d.K(r?“, 1) wh, 0 
~ = u,g - L’,C, 
ns(rld cc-, g= ah ah 

(18) 

To find n, from equations (18) along the trajectory of 
drops, it is necessary to know the functions e and g. 
For their determination, differentiate equation (I 7) 
with respect to ‘1”. This will yield the equations and 
boundary conditions 

ds 
ii7 = I” 

drv 
- = c2G+ 9(u-u,)‘/3 dt 

R?‘3(v-u,)c, +KIC, +c,(L,-u,)] 

au au alI at? 
c, = ez +g% -r, c? = eG ‘9% --Iv 

a4h 0 a4h~ 0 

I’=-%7 I41 = arlo 

c3 = 
( 

ah ah 
ea++9&5 

)I 
2; 

t=O: e=O, r=O, g=l, w=O. (19) 

For numerical calculations of equations (l7)-(19) a 
new independent variable x was introduced, the 
resulting system of equations was integrated numeri- 
cally by the Kutta-Merson method. The carrying 
phase velocity components and their derivatives in 
space were calculated with the use of the cubic inter- 
polation of the tabulated values of the function Ffrom 

I 

x 
x I I/ 
02 / 
a3 /- 2/ 

5- 

A 

0 I 2 3 4 

FIG. 5. Comparison of the predicted heat transfer coefficient 
for the section of the plate with the experimental data of 
ret-. [2] (I. U, * = 9.8 m s- , _. ’ 7 u: = 7.5 m s -1; 3 t,* = , , 
5.4 m s- ‘) the dashed lines indicate the calculation with the 

correction factor at the SalTman force. 

ref. [l7]. Figure 5 presents the comparison of the 
predicted values of A with the data obtained in pro- 
cessing the variables of experimental results of ref. [2]. 
The crosses, circles and triangles correspond to the 
experimental data for the external flow velocities of 
980, 750 and 540 cm s- ‘. The predicted results for 
the same velocities are shown by solid lines l-3. In 
computations it was assumed that CT = 3 x 10m4 cm, 
Pr = 0.72, cp = 1 J deg- ’ g- ‘, H = 2.35 x IO-’ J g- ’ 
deg-‘, py/p* = 103, V* = 0.17 cm’ s-‘. Note that 
the Reynolds numbers for flow around drops in a 
boundary layer are not small under the considered 
conditions. This should be taken into account in the 
coefficient at the Saffman force. Based on the com- 
parison, within a wide range of Reynolds numbers, 
between the predicted and experimental data on the 
trajectories of particles in a wall boundary layer 
behind a shock wave, a conclusion has been drawn 
[I 81 concerning the necessity for about a five-fold 
increase in the coefficient at the Saffman force at rather 
high Reynolds numbers. Therefore, calculations of 
the quantity A with the coefficient K increased five- 
fold have been also conducted (dashed lines in Fig. 
5). For u: = 540 cm s- ’ the dashed line coincides 
with solid line 2. It is seen that the dashed lines better 
fit the experimental data. The most important result 
was the determination of the governing parameter cp. 
equation (l6), on which the degree of heat transfer 
enhancement depends. The finiteness of q even at a 
very low concentration of drops explains the effect of 
heat transfer enhancement on a hot plate observed in 
experiments [2]. 

In conclusion, it should be noted that currently the 
problem of a lift force acting on a sphere which moves 
in the shear velocity field of a gas has not been solved 
in rigorous formulation with allowance for finite iner- 
tia effects. A recent publication [19] does not take into 
account the origin of the angular rotation of a sphere. 
It should be also noted that the description of local 
heat transfer in the conditions of mist flow with the 
deposition of drops requires more detailed models of 
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the interaction of drops with a hot surface, including 
the account for the fragmentation and evaporation of 
drop fractions in a wall layer. 

6. CONCLUSION 

A consistent asymptotic model of a laminar bound- 
ary layer in a two-phase ‘gas-evaporating drops’ 
medium is suggested with account for the inertia of 
drops. The problem of a two-phase boundary layer 
on a heated semi-infinite plate has been solved by 
numerical and asymptotic methods. It is shown that 
in the case of fine drops a region with a pure gas may 
appear within the boundary layer. At the boundary of 
this region the accumulation of drops occurs. Larger 
drops are carried out onto the wall due to the Saffman 
force acting on the sphere in a locally shear flow and 
their contact with the hot surface intensifies the heat 
transfer. Similarity parameters have been identified 
that characterize the’degree of heat transfer enhance- 
ment by drops evaporating in the boundary layer. The 
increase in the heat transfer coefficient is shown to be 
proportional to the quantity uH/c,(Tz - T:). This 
effect can be significant even at small (about I %) mass 
concentration of drops thus confirming the future 
prospects in using mist flows for enhancing heat trans- 
fer processes. 
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